IPv6 Challenge

Fernando Gont

AIS 2017 Hackathon Nairobi, Kenya. May 27-28, 2017

About...

- Security Researcher and Consultant at SI6 Networks
- Published:
 - 20 IETF RFCs (9 on IPv6)
 - 10+ active IETF Internet-Drafts
- Author of the SI6 Networks' IPv6 toolkit
 - http://www.si6networks.com/tools/ipv6toolkit
- I have worked on security assessment of communication protocols for:
 - UK NISCC (National Infrastructure Security Co-ordination Centre)
 - UK CPNI (Centre for the Protection of National Infrastructure)
- More information at: http://www.gont.com.ar

Agenda

- Discuss two recent IETF RFCs (RFC6946 & RFC8021)
- Test their implementation
- Then:
 - Document the tests in an IETF Internet-Draft, OR,
 - Produce an implementation of such RFCs in open source OSes

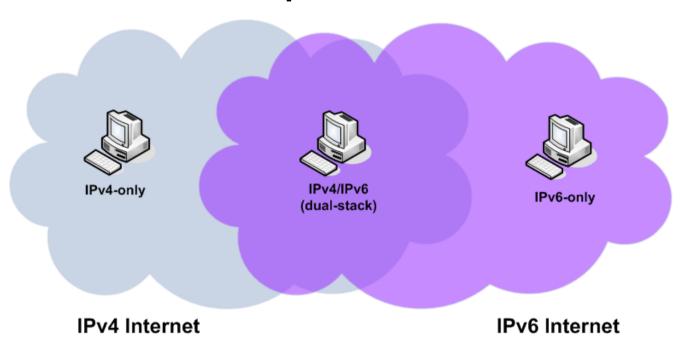
Brief introduction to IPv6

IPv4 address exhaustion


- The Internet relies on unique addresses for host communication
- More than 20 years ago it was already evident we'd eventually run out of IPv4 addresses
- Network Address Translators (NATs) have served as a stop-gap
- But nevertheless we're hitting IPv4 address exhaustion

IPv4 address exhaustion (II)

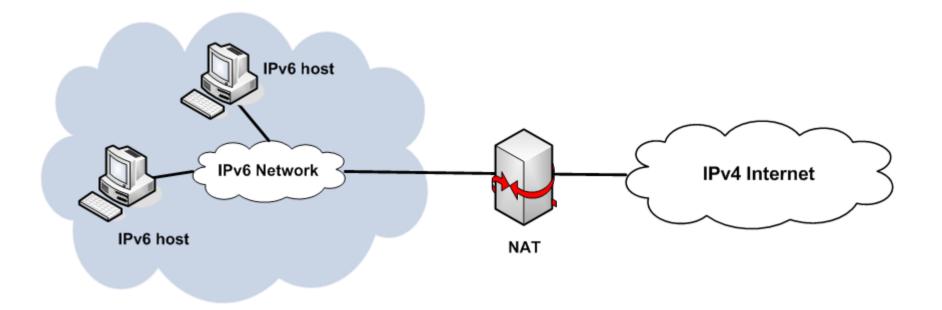
IPv4 address exhaustion, as predicted by Geoff Huston


RIR IPv4 Address Run-Down Model

So... what is this "IPv6" thing about?

- It addresses the problem of IPv4 address exhaustion
- Employs 128-bit addresses (vs. IPv4's 32-bit addresses)
- Provides the same service as IPv4
- It is not backwards-compatible with IPv4

So... what is this "IPv6" thing about? (II)


 We can connect IPv6 islands across the IPv4 Internet with tunnels

So... what is this "IPv6" thing about? (III)

 We can interconnect IPv6-only hosts with IPv4-only hosts with "translators"

So... what is this "IPv6" thing about? (IV)

- For every domain name, the DNS can contain
 - A resource records (IPv4 addresses)
 - AAAA (Quad-A) resource records (IPv6 addresses)
- Host may query for A and/or AAAA resource records according different criteria
- Based on the available resource records, supported protocols, and local policy, IPv6 and/or IPv4 could be employed

Current state of affairs: Implementation

- General-purpose OSes have shipped with IPv6 support for a long time
 - part of your network is already running IPv6!
- Other devices may require updates or replacement:
 - CPE's
 - Firewalls
 - Routers
 - NIDSs
 - etc.


Current state of affairs: Deployment

- IPv6 was essentially ignored for years
- Many organizations have now started to take IPv6 more seriously, partly as a result of:
 - Exhaustion of the IANA IPv4 free pool
 - Imminent exhaustion of the address pool at the different RIRs
 - Awareness activities ("World IPv6 Day" & "World IPv6 Launch Day")
 - Main content providers (Google, Facebook, Yahoo, etc.) have deployed IPv6 on their public-facing servers

Current state of affairs: Deployment (II)

IPv6 usage as measured by Google:

Current state of affairs: Deployment (III)

- IPv6 deployment per country
 - Visit: https://www.google.com/intl/en/ipv6/statistics.html

IPv6 tools

THC-IPv6 Toolkit: Introduction

- First and only IPv6 attack toolkit for many years
- Easy to use
 - Only minimal IPv6 knowledge required
- Features:
 - Only runs on Linux with Ethernet
 - Free software
 - Lacks of comprehensive documentation
- Available at: http://www.thc.org/thc-ipv6

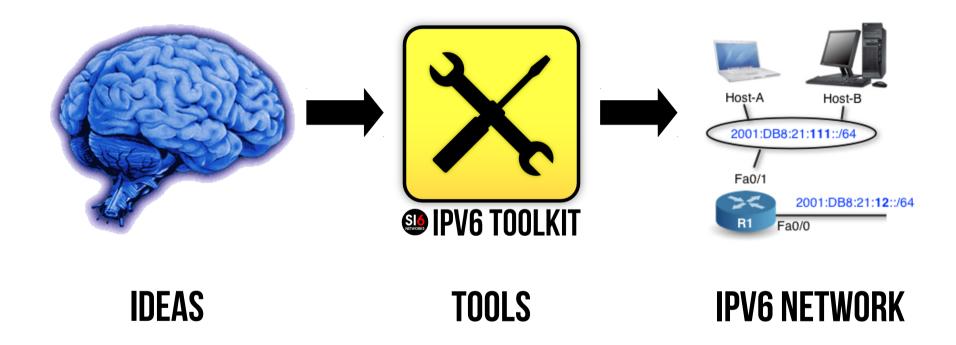
SI6 Networks' IPv6 Toolkit

Brief history:

- Originally produced as part of a governmental project on IPv6 security
- Maintenance and extension taken over by SI6 Networks

Goals:

- Security assessment and trouble-shooting of IPv6 networks and implementations
- Clean, portable, and secure code
- Good documentation



SI6 Networks' IPv6 Toolkit (II)

- Supported OSes:
 - Linux, FreeBSD, NetBSD, OpenBSD, OpenSolaris, and Mac OS
- License:
 - GPL (free software)
- Home:
 - http://www.si6networks.com/tools/ipv6toolkit
- Collaborative development:
 - https://www.github.com/fgont/ipv6toolkit.git

SI6 Networks' IPv6 Toolkit: Philosophy

"an interface between your ideas and an IPv6 network"

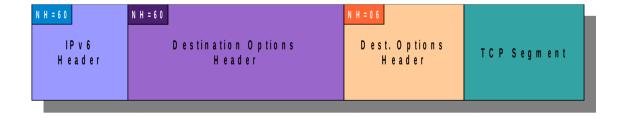
SI6 Networks' IPv6 Toolkit: Tools

- ns6
- na6
- rs6
- ra6
- addr6
- path6

- rd6
- scan6
- frag6
- tcp6
- script6
- blackhole6

- icmp6
- ni6
- flow6
- jumbo6
- udp6

IPv6 Extension Headers



IPv6 Extension Headers Overview

IPv6's Next Header field

- Identifies the header/protocol type following this header.
- IPv6 options are included in "extension headers"
 - These headers sit between the IPv6 header and the upper-layer protocol
 - There may be multiple instances, of multiple extension headers, each with multiple options
- Hence, IPv6 follow a "header chain" type structure. e.g.,

IPv6 Extension Headers General implications of Extension Headers

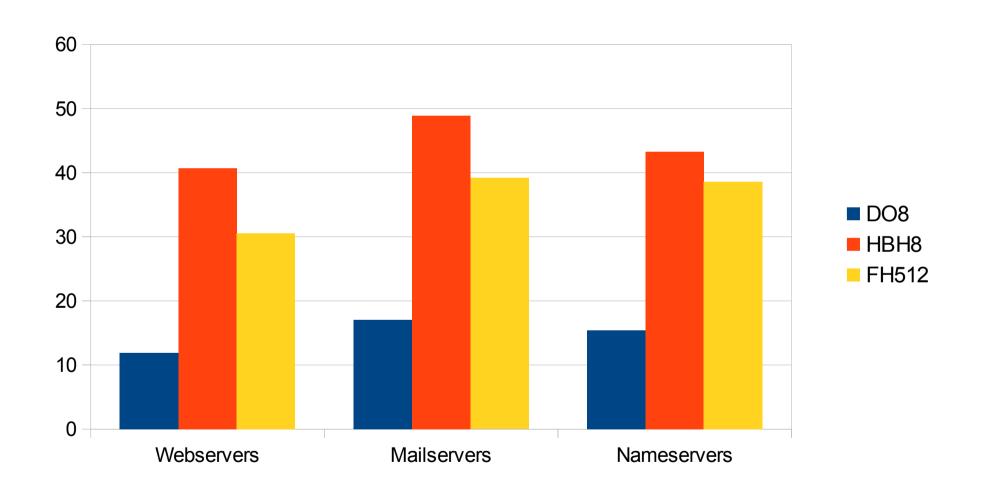
Processing the IPv6 header chain

- Large number of headers/options may have a negative impact on performance
- Many routers can only look into a few dozen bytes into the packet
- It is harder to spot e.g. layer-4 information (if at all possible)

Fragmentation deemed as 'insecure'

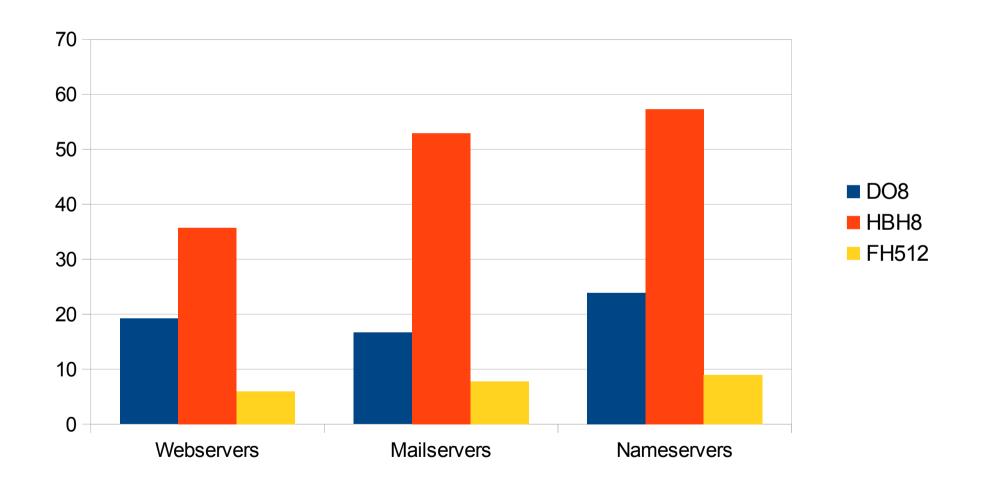
- DoS vector:
 - Some are afraid about stateful-ness of IPv6 fragments
- Evasion:
 - It becomes harder (if at all possible) to implement ACLs
- Buggy implementations:
 - e.g. some boxes crash when a malformed fragment traverses it

IPv6 Extension Headers In The Real World

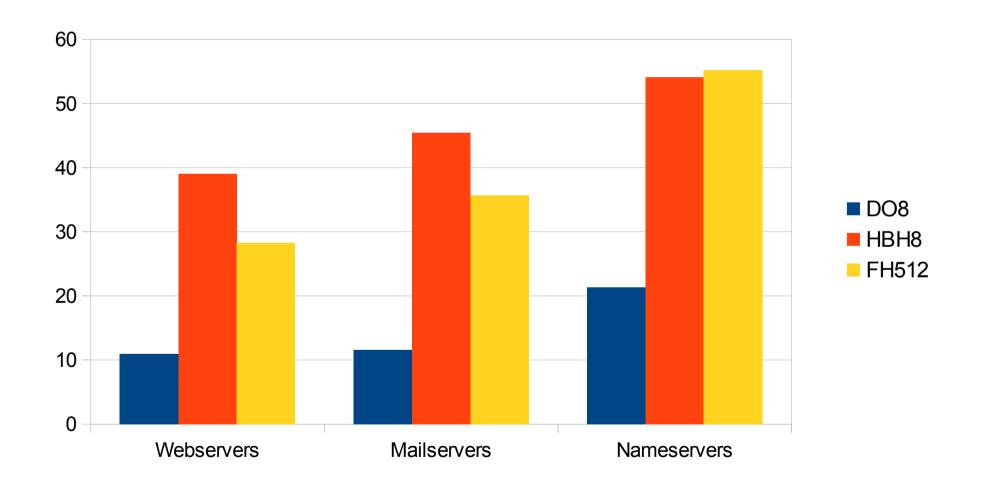


IPv6 Fragmentation and EH reliability

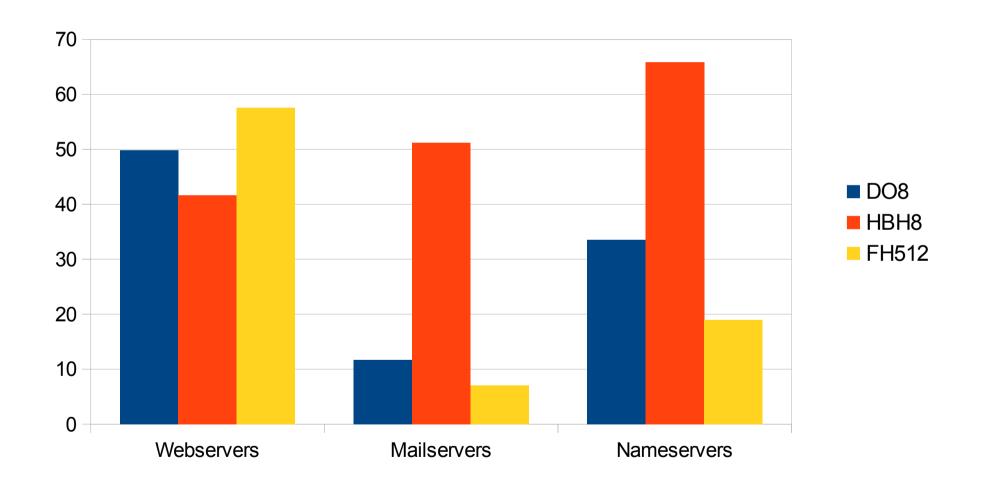
- Operators filter them, as a result of:
 - Perceived issues with IPv6 Fragmentation and EH
 - Almost no current dependence on them
- IPv6 Extension Headers result in unreliability



WIPv6LD dataset: Packet Drop rate



WIPv6LD dataset: Drops by diff. AS

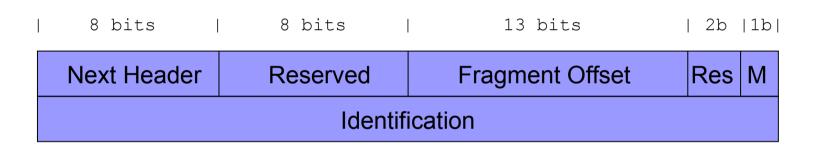


Alexa dataset: Packet Drop rate

Alexa dataset: Drops by diff. AS

So... what does this all mean?

- Good luck with getting IPv6 EHs working in the Internet!
 - They are widely dropped
- IPv6 EHs "not that cool" for evasion, either
 - Chances are that you will not even hit your target



IPv6 Extension Headers Fragment Header

IPv6 Fragmentation Overview

- IPv6 fragmentation performed only by hosts (never by routers)
- Fragmentation support implemented in "Fragmentation Header"

- Where:
 - Fragment Offset: Position of this fragment with respect to the start of the fragmentable part
 - M: "More Fragments", as in IPv4
 - "Identification": Identifies the packet (with Src IP and Dst IP)

Fragmentation: Example

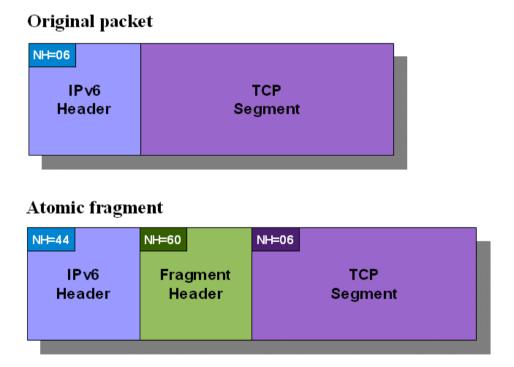
• ping6 -s 1800 2004::1

```
PING 2004::1(2004::1) 1800 data bytes

1808 bytes from 2004::1: icmp_seq=1 ttl=64 time=0.973 ms

--- 2004::1 ping statistics ---

1 packets transmitted, 1 received, 0% packet loss, time 0ms


rtt min/avg/max/mdev = 0.973/0.973/0.973/0.000 ms
```

tcpdump output:

```
20:35:27.232273 IP6 2004::5e26:aff:fe33:7063 > 2004::1: frag (0|1448) ICMP6, echo request, seq 1, length 1448
20:35:27.232314 IP6 2004::5e26:aff:fe33:7063 > 2004::1: frag (1448|360)
20:35:27.233133 IP6 2004::1 > 2004::5e26:aff:fe33:7063: frag (0|1232) ICMP6, echo reply, seq 1, length 1232
20:35:27.233187 IP6 2004::1 > 2004::5e26:aff:fe33:7063: frag (1232|576)
```

IPv6 "atomic" fragments

- ICMPv6 PTB < 1280 triggers inclusion of a FH in all packets to that destination (not actual fragmentation)
- Result: IPv6 atomic fragments (Frag. Offset=0, More Frag.=0)

Issues with IPv6 atomic fragments

- Some implementations mix "atomic fragments" with queued fragments
- Atomic fragments thus become subject of IPv6 fragmentation attacks
- How to leverage this issue:
 - Trigger atomic fragments with ICMPv6 PTB messages
 - Now perform IPv6 fragmentation-based attacks

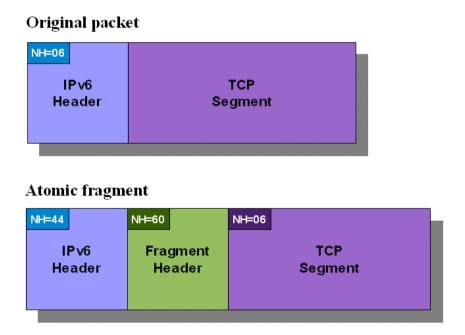
Processing of IPv6 atomic fragments

- Atomic fragment do not need to be mixed with other fragments
 they are atomic!
- Skipping the normal reassembly procedure eliminates fragmentation-based attacks for such traffic
- RFC 6946 improves the handling of IPv6 atomic fragments:
 - They are required to be processed as non-fragmented traffic

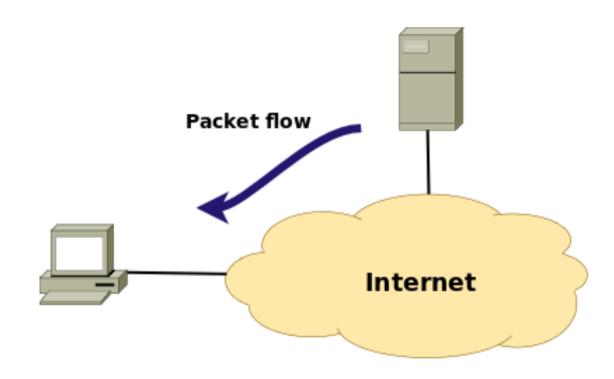
Assessing support for atomic fragments

Check response to atomic fragments

```
# frag6 --frag-type atomic --frag-id 100 -d
fc00:1::1
```

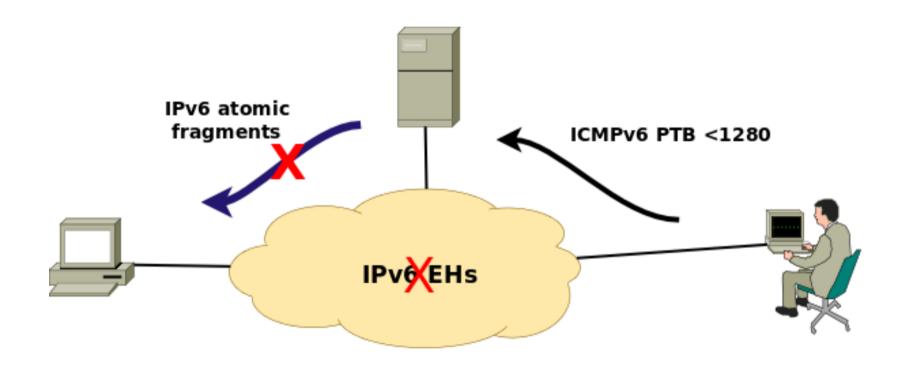

Assess support for atomic fragments:

```
# frag6 --frag-type first --frag-id 100 -d
fc00:1::1
# frag6 --frag-type atomic --frag-id 100 -d
fc00:1::1
```



Generation of IPv6 atomic fragments

- If IPv6 frags are widely dropped...What if we triggered their generation?
 - Send an ICMPv6 PTB with an MTU<1280
 - The node will then generate IPv6 atomic fragments
 - Packets will get dropped

Attack Scenario #1


Client communicates with a server

Attack Scenario #1 (II)

Attacking client-server communications

Attack scenario #1 (II)

- Simple way to reproduce it:
 - Attack and client machine is the same one
 - So we attack our own "connections"
- Attack:
 - Test IPv6 connetivity:

```
telnet 2001:4f8:1:10:0:1991:8:25 80
```

Send an ICMPv6 PTB < 1280 to trigger atomic fragments

```
sudo icmp6 --icmp6-packet-too-big -d
2001:4f8:1:10:0:1991:8:25 --peer-addr
2001:5c0:1000:a::a37 --mtu 1000 -o 80 -v
```

Test IPv6 connectivity again:

```
telnet 2001:4f8:1:10:0:1991:8:25 80
```


Generation of IPv6 atomic fragments

RFC8021

- Discusses the rationale for deprecating the generation of IPv6 atomic fragments in the upcoming revision of RFC2460
- i.e. Hosts are not required to generated them in response to ICMPv6 PTB<1280

IPv6 Challenge

Testing

- Install the SI6 Networks IPv6 toolkit
- Test:
 - Processing of IPv6 atomic fragments (RFC6946)
 - Generation of IPv6 atomic fragments (RFC8021)
- Then:
 - Group #1: Document the testing process in an IETF Internet-Draft
 - Group #2: Implement support of such RFCs in open source OSes

Thanks!

Fernando Gont

fgont@si6networks.com

IPv6 Hackers mailing-list

http://www.si6networks.com/community/

